
12 CROSSTALK The Journal of Defense Software Engineering March 2003

The requirements-based testing (RBT)
process is comprised of two phases:

ambiguity reviews and cause-effect graph-
ing. An ambiguity review is a technique for
identifying ambiguities in functional1

requirements to improve the quality of
those requirements. Cause-effect graphing
is a test-case design technique that derives
the minimum number of test cases to cover
100 percent of the functional requirements.

Testing can be divided into the follow-
ing seven activities:
1. Define Test Completion Criteria.

The test effort has specific, quantifiable
goals. Testing is completed only when
the goals have been reached (e.g., testing
is complete when the tests that address
100 percent functional coverage of the
system all have executed successfully).

2. Design Test Cases. Logical test cases
are defined by four characteristics: the
initial state of the system prior to exe-
cuting the test, the data, the inputs, and
the expected results.

3. Build Test Cases. There are two parts
needed to build test cases from logical
test cases: creating the necessary data,
and building the components to sup-
port testing (e.g., build the navigation to
get to the portion of the program being
tested).

4. Execute Tests. Execute the test-case

steps against the system being tested
and document the results.

5. Verify Test Results. Testers are
responsible for verifying two different
types of test results: Are the results as
expected? Do the test cases meet the
test completion criteria?

6. Verify Test Coverage. Track the
amount of functional coverage
achieved by the successful execution of
each test.

7. Manage the Test Library. The test
manager maintains the relationships
between the test cases and the pro-
grams being tested. The test manager
keeps track of what tests have or have
not been executed, and whether the
executed tests have passed or failed.
Activities one, two, and six are

addressed by RBT. The remaining four
activities are addressed by test management
tools that track the status of test execu-
tions.

The RBT process stabilizes the applica-
tion interface definition early because the
requirements for the user interface become
well defined and are written in an unam-
biguous and testable manner. This allows
the use of capture/playback tools sooner in
the software development life cycle.

Relative Cost to Fix an Error
The cost of fixing an error is lowest in the
first phase of software development (i.e.,
requirements). This is because there are
very few deliverables at the beginning of a
project to correct if an error is found. As
the project moves into subsequent phases
of software development, the cost of fixing
an error rises dramatically since there are
more deliverables affected by the correc-
tion of each error. At the requirements
phase the cost ratio to fix errors is one to
one; at coding it is 10 to one; at production
it is from 40 to 1,000 to one.

A study by James Martin showed that
the root cause of 56 percent of all bugs
identified in projects is errors introduced in
the requirements phase. Of the bugs root-
ed in requirements, roughly half were due

to poorly written, ambiguous, unclear, and
incorrect requirements. The remaining half
was due to requirements that were com-
pletely omitted (see Figure 1).

Why Good Requirements
Are Critical
A study by the Standish Group in 2000
showed that American companies spent
$84 billion for cancelled software projects.
Another $192 billion was spent on software
projects that significantly exceeded their
time and budget estimates. The Standish
Group and other studies show there are
three top reasons why software projects
fail:
• Requirements and specifications are

incomplete.
• Requirements and specifications change

too often.
• There is a lack of user input (to require-

ments).
The RBT process addresses each of these
issues:
• It begins at the first phase of software

development where the correction of
errors is the least costly.

• It begins at the requirements phase
where the largest portion of bugs have
their root cause.

• It addresses improving the quality of
requirements: Inadequate requirements
often are the reason for failing projects.

A Good Test Process
The characteristics of a good test process
are as follows:
• Testing must be timely. Testing

begins when requirements are first
drafted; it must be integrated through-
out the software development life cycle.
In this way, testing is not perceived as a
bottleneck operation. Test early, test
often.

• Testing must be effective. The
approach to test-case design must have
rigor to it. Testing should not rely on
individual skills and experiences.
Instead, it should be based on a repeat-

What Is Requirements-Based Testing?
Gary E. Mogyorodi

Bloodworth Integrated Technology, Inc.

This article provides an overview of the requirements-based testing (RBT) process. RBT is comprised of two phases: ambi-
guity reviews and cause-effect graphing. An ambiguity review is a technique for identifying ambiguities in functional 1 require-
ments to improve the quality of those requirements. Cause-effect graphing is a test-case design technique that derives the min-
imum number of test cases to cover 100 percent of the functional requirements. The intended audience for this article is proj-
ect managers, development managers, developers, test managers, and test practitioners who are interested in understanding RBT
and how it can be applied to their organization.

Distribution of Bugs

Requirements
56%

10%
Code
7%

Other

Design
27%

Figure 1: Distribution of Bugs

What Is Requirements-Based Testing?

March 2003 www.stsc.hill.af.mil 13

able test process that produces the same
test cases for a given situation, regard-
less of the tester involved. The test-case
design approach must provide high
functional coverage of the require-
ments.

• Testing must be efficient. Testing
activities must be heavily automated to
allow them to be executed quickly. The
test-case design approach should pro-
duce the minimum number of test
cases to reduce the amount of time
needed to execute tests, and to reduce
the amount of time needed to manage
the tests.

• Testing must be manageable. The
test process must provide sufficient
metrics to quantitatively identify the sta-
tus of testing at any time. The results of
the test effort must be predictable (i.e.,
the outcome each time a test is success-
fully executed must be the same).

Standard Software
Development Life Cycle
There are many software development
methodologies. Each has its own character-
istics and approaches, but most software
development methodologies share the fol-
lowing six aspects:
• Requirements. There is a description

of what has to be delivered.
• Design. There is a description of how

the requirements will be delivered.
• Code. The system is constructed from

the requirements and the design.
• Test. The behavior of the code is com-

pared to the expected behavior
described by the requirements.

• Write user manuals/write training
materials. Documentation is created to
support the delivered system.

• International translations. Code is
often executed in different countries
with different languages; the initial sys-
tem must be translated into the native
language of the target country.
In many software development

methodologies, testing does not begin until
after code is constructed. If a defect is
found after coding, there is a good deal of
scrap and rework to correct the code, and
possibly the design, test cases, and require-
ments as well. Defects must be tested out
of the system rather than being avoided in
the first place. Testing often is a bottleneck
activity. See Figure 2 for a graphical repre-
sentation of a standard development life
cycle.

Life Cycle With
Testable Requirements
In a software development life cycle with

testable requirements and integrated test-
ing, the RBT process is integrated through-
out the entire software development life
cycle. As soon as requirements are com-
plete, they are tested. As soon as the design
is complete, the requirements are walked
through the design to ensure that they can
be met by the design. As soon as the code
is constructed and reviewed, it is tested as
usual. But because testing begins at the
requirements phase, many defects are
avoided instead of being tested out of the
code.

This is a less costly and more timely
approach. User manuals and training mate-
rials can be developed sooner. The entire
software development life cycle is com-
pressed. Testing is performed in parallel
with development instead of all at the end,
so testing is no longer a bottleneck. There
are fewer surprises when the code is deliv-
ered (see Figure 3).

The RBT Methodology
The RBT methodology is a 12-step
process. Each of these steps is described
below.
1. Validate requirements against

objectives. Compare the objectives,
which describe why the project is being
initiated, to the requirements, which
describe what is to be delivered. The
objectives define the success criteria for
the project. If the what does not match
the why, then the objectives cannot be
met, and the project will not succeed. If
any of the requirements do not achieve
the objectives, then they do not belong
in the project scope.

2. Apply use cases against require-
ments. Some organizations document
their requirements with use cases. A use
case is a task-oriented users’ view of the
system. The individual requirements,
taken together, must be capable of sat-

isfying any use-case scenarios; other-
wise, the requirements are incomplete.

3. Perform an initial ambiguity review.
An ambiguity review is a technique for
identifying and eliminating ambiguous
words, phrases, and constructs. It is not
a review of the content of the require-
ments. The ambiguity review produces
a higher-quality set of requirements for
review by the rest of the project team.

4. Perform domain expert reviews. The
domain experts review the require-
ments for correctness and complete-
ness.

5. Create cause-effect graph. The re-
quirements are translated into a cause-
effect graph, which provides the follow-
ing benefits:
• It resolves any problems with alias-

es (i.e., using different terms for the
same cause or effect).

• It clarifies the precedence rules
among the requirements (i.e., what
causes are required to satisfy what
effects).

• It clarifies implicit information,

Figure 2: Standard Development Life Cycle

Figure 3: Life Cycle With Testable Requirements and Integrated Testing

Quality Software

14 CROSSTALK The Journal of Defense Software Engineering March 2003

making it explicit and understand-
able to all members of the project
team.

• It begins the process of integration
testing. The code modules eventual-
ly must integrate with each other. If
the requirements that describe these
modules cannot integrate, then the
code modules cannot be expected
to integrate. The cause-effect graph
shows the integration of the causes
and effects.

6. Logical consistency checks per-
formed and test cases designed. A
tool identifies any logic errors in the
cause-effect graph. The output from
the tool is a set of test cases that are 100
percent equivalent to the functionality
in the requirements.

7. Review of test cases by require-
ments authors. The designed test
cases are reviewed by the requirements
authors. If there is a problem with a test
case, the requirements associated with
the test case can be corrected and the
test cases redesigned.

8. Validate test cases with the
users/domain experts. If there is a
problem with the test case, the require-
ments associated with it can be correct-
ed and the test case redesigned. The
users/domain experts obtain a better
understanding of what the deliverable
system will be like. From a Capability
Maturity Model® IntegrationSM

(CMMISM) perspective, you are validat-
ing that you are building the right system.

9. Review of test cases by developers.
The test cases are also reviewed by the
developers. By doing so, the developers
understand what they are going to be
tested on, and obtain a better under-
standing of what they are to deliver so
they can deliver for success.

10. Use test cases in design review. The
test cases restate the requirements as a
series of causes and effects. As a result,
the test cases can be used to validate
that the design is robust enough to sat-
isfy the requirements. If the design can-
not meet the requirements, then either
the requirements are infeasible or the
design needs rework.

11. Use test cases in code review. Each
code module must deliver a portion of

the requirements. The test cases can be
used to validate that each code module
delivers what is expected.

12. Verify code against the test cases
derived from requirements. The final
step is to build test cases from the logi-
cal test cases that have been designed by
adding data and navigation to them, and
executing them against the code to
compare the actual behavior to the
expected behavior. Once all of the test
cases execute successfully against the
code, then it can be said that 100 per-
cent of the functionality has been veri-
fied and the code is ready to be deliv-
ered into production. From a CMMI
perspective, you have verified that you
are building the system right.

An Ambiguity Review
Here is a sample of a requirement written
in first draft. It is not testable because it
contains ambiguities.

ATMs shall send an alert to the
information technology (IT) depart-
ment when the ATM has been tam-
pered with. In the event that the
ATM is opened without the key and
security code, the ATM will alert the
IT department immediately so the
appropriate action can be taken.

After performing an ambiguity review
of the requirements, the following ambigu-
ities are identified:
• What type of alert does the ATM issue

to the IT department?
• What is the definition of tampered with?
• Is tampered with the same as “in the

event that the ATM is opened without
the key and security code?”

• What happens if the key is used and an
invalid security code is entered?

• What is the alert text?
• What is the appropriate action?

The requirements are revised so that
the ambiguities are eliminated. The require-
ments are now testable.

ATMs shall send a tamper alert to
the IT department when the ATM
has been tampered with, i.e., opened
without the key and the valid securi-
ty code.

Case 1: (1) If the service oper-
ator enters the key into the ATM,
then the following message displays
on the ATM console: “Please enter
the valid security code.” (2) If the
service operator enters the valid
security code, then the ATM opens.

Case 2: After entering the key

in the ATM, if the service operator
enters an incorrect security code,
then (1) the following message dis-
plays on the ATM console:
“Security Code invalid. Please re-
enter.” (2) The service operator now
has three tries to enter the valid
security code. If a valid security
code is entered in less than or equal
to three tries, then the ATM is
opened. Each time an invalid securi-
ty code is entered, the following
message is displayed on the ATM
console: “Security code invalid.
Please re-enter.”

Case 3: If a valid security code
has not been entered by the third
try, then (1) the following message
displays on the ATM console:
“Security code invalid. The IT
department will be notified.” (2)
The ATM alerts the IT department
immediately.

Case 4: In the event that the
ATM is opened without the key and
the valid security code, then the
ATM sends a tamper alert to the IT
department immediately.

A Cause-Effect Graphing
Example
Consider a check-debit function whose
inputs are new balance and account type, which
is either postal or counter, and whose out-
put is one of four possible values:
• Process debit and send out letter.
• Process debit only.
• Suspend account and send out letter.
• Send out letter only.
The function has the following require-
ments and is testable:
• If there are sufficient funds available in

the account to be in credit, or the new
balance would be within the authorized
overdraft limit, then process the debit.

• If the new balance is below the author-
ized overdraft limit, then do not process
the debit, and if the account type is
postal, then suspend the account.

• If a) the transaction has an account type
of postal or b) the account type is
counter and there are insufficient funds
available in the account to be in credit,
then send out letter.

The causes for the function are as follows:
• C1 – New balance is in credit.
• C2 – New balance is in overdraft, but

within the authorized overdraft limit.
• C3 – Account type is postal.
The effects for the function are as follows:
• E1 – Process the debit.
• E2 – Suspend the account.
• E3 – Send out letter.

Figure 4: Cause-Effect Graph

What Is Requirements-Based Testing?

March 2003 www.stsc.hill.af.mil 15

A cause-effect graph shows the relation-
ships between the conditions (causes) and
the actions (effects) in a notation similar to
that used by designers of hardware logic cir-
cuits. The check-debit requirements are
modeled by the cause-effect graph shown in
Figure 4. C1 and C2 cannot be true at the
same time.

The cause-effect graph is converted into
a decision table. Each column of the deci-
sion table is a rule. The table comprises two
parts. In the top part, each rule is tabulated
against the causes. A T indicates that the
cause must be TRUE for the rule to apply
and an F indicates that the condition must
be FALSE for the rule to apply. In the bot-
tom part, each rule is tabulated against the
effects. A T indicates that the effect will be
performed; an F indicates that the effect will
not be performed; an asterisk (*) indicates
that the combination of conditions is infea-
sible and so no effects are defined for the
rule. The check-debit function has the deci-
sion table shown in Table 1.

Only test cases one through five in Table
1 are required to provide 100 percent func-
tional coverage. Rule No. 6 does not provide
any new functional coverage that has not
already been provided by the other five rules,
so a test case is not required for rule No. 6.
No test cases are generated for rule Nos. 7
and 8 because they describe infeasible condi-
tions since C1 and C2 cannot be true at the
same time. The final set of test cases with
sample-data values is described in Table 2.

Real-Life Problem Test Cases
With a real-life problem, there are usually far
more than three inputs (causes). As an
example, in one application where RBT was
applied, there were 37 inputs. This allowed a
maximum of 2**37, or 137,438,953,472
possible test cases. RBT resolved the prob-
lem with 22 test cases that provided 100 per-
cent functional coverage.

Consider the following thought experi-
ment: Put 137,438,953,450 red balls in a
giant barrel. Add 22 green balls to the barrel

and mix well. Turn out the lights. Pull out 22
balls. What is the probability that you have
selected all 22 of the green balls? If this does
not seem likely to you, try again. Return the
balls and pull out 1,000 balls. What is the
probability that you now have selected all 22
of the green balls? If this still does not seem
likely to you, try again. Return the balls and
pull out 1,000,000 balls. What is the proba-
bility that you now have selected all 22 of the
green balls? This is what gut-feel testing really
is.

For most complex problems it is impos-
sible to manually derive the right combina-
tion of test cases that covers 100 percent of
the functionality. The right combination of
test cases is made up of individual test cases,
and each covers at least one type of error
that none of the other test cases covers.
Taken together, the test cases cover 100 per-
cent of the functionality. Any more test
cases would be redundant because they
would not catch an error that is already cov-
ered by an existing test case.

Gut-feel testing often focuses only on
the normal processing flow. Another name
for this is the go path. Gut-feel testing often
creates too many (redundant) test cases for
the go path. Gut-feel testing also often does
not adequately cover all the combinations of
error conditions and exceptions, i.e., the pro-
cessing off the go path. As a result, gut-feel
testing suffers when it comes to functional
coverage.

Summary
In summary, the RBT methodology delivers
maximum coverage with the minimum num-
ber of test cases. This translates into 100
percent functional coverage and approxi-
mately 70 percent to 90 percent code cover-
age. RBT also provides quantitative test
progress metrics within the 12 steps of the
RBT methodology, ensuring that testing is
adequately provided and is no longer a bot-
tleneck. Logical test cases are designed and
become the basis for highly portable cap-
ture/playback test scripts.◆

Note
1. A functional requirement specifies what

the system must be able to do in terms
that are meaningful to its users. A non-
functional requirement specifies an
aspect of the system other than its
capacity to do things. Examples of non-
functional requirements include those
relating to performance, reliability, serv-
iceability, availability, usability, portabili-
ty, maintainability, and extendibility.

Rules 1 2 3 4 5 6 7 8

C1: New balance is in credit. F F F T T F T T

C2: New balance is in overdraft,
but within the authorized limit. F F T F F T T T

C3: Account is postal. F T F F T T F T

E1: Process the debit. F F T T T T * *

E2: Suspend the account. F T F F F F * *

E3: Send out letter. T T T F T T * *

Table 1: Decision Table

CAUSES EFFECTS

Current
Balance

Debit
Amount

Difference Overdraft
Limit

New
Balance

Account
Type

 Action

1 -$70 $50 -$120 -$100 -$70 Counter Send out letter.

2 $420 $2,000 -$1,580 -$1,500 $420 Postal Suspend the account;
send out letter.

3 $650 $800 -$150 -$250 -$150 Counter

4 $2,100 $1,200 $900 -$1,000 $900 Counter Process the debit.

5 $250 $150 $100 -$500 $100 Postal Process the debit;
send out letter.

Process the debit;
send out letter.

Test
Case

Action

Table 2: Test Cases

About the Author

Gary E. Mogyorodi is
a senior consultant
with Bloodworth Inte-
grated Technology,
Inc., consulting, train-
ing, and mentoring in

software testing, and specializing in
requirements-based testing. He has
more than 29 years of experience in
the computing industry and has pre-
sented at numerous conferences,
including the Software Technology
Conference, Software Quality Forum,
Toronto SPIN, Starwest, and more.
Mogyorodi has a bachelor’s degree in
mathematics from the University of
Waterloo, and a master’s degree in
business administration from
McMaster University.

Bloodworth Integrated Technology,Inc.
36A Mendota Road #8
Toronto, Ontario
Canada M8Y 1E8
Phone: (416) 521-7200
Fax: (419) 831-6407
E-mail: garym@bitspi.com

Did this article pique your
interest?
You can hear more from Gary E.
Mogyorodi at the Fifteenth Annual
Software Technology Conference Apr.
28-May 1, 2003 in Salt Lake City, UT. He
will be presenting in Track 1 on Monday,
Apr. 28, at 3:10 p.m.

